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Abstract: Sugarcane bagasse is a large-volume agriculture residue that is generated on a ~540 million 
metric tons per year basis globally1,2 with the top-three producing countries in Latin America being 
Brazil (~181 million metric ton yr−1),3 Mexico (~15 million metric ton yr−1),4 and Colombia (~7 million 
metric ton yr−1),5 respectively.6 Given sustainability concerns and the need to maximize the utilization 
of bioresources, the use of sugarcane bagasse is receiving signifi cant attention in biorefi ning applica-
tions, as it is a promising resource for the conversion to biofuels and biopower. This review provides 
a comprehensive review of bagasse and its chemical constituents and on-going research into its uti-
lization as a feedstock for cellulosic ethanol and electricity generation. © 2016 Society of Chemical 
Industry and John Wiley & Sons, Ltd
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Introduction

In the past few decades, the high consumption of fossil 
  cult-to-recover 

petroleum reserves, which have heightened envi-
ronmental concerns along with energy security issues. 

 ese issues, in addition to global climate change due to 
greenhouse gas (GHG) emissions, have led researchers to 
explore alternative fuels based on sustainable bioresources. 
Agro-energy crops and plant residues are two of the most 
promising low-cost, sustainable biomaterials for biofuel 
and power generation.

First-generation bioethanol has been widely used for 
vehicle fuels, lowering net carbon dioxide emissions com-
pared to fossil fuels. However, the increasing demand for 
 rst generation ethanol requires high feedstock produc-

tion, leading to food vs. fuel concerns and an increase in 
land usage. Second-generation biofuels could avoid many 
of these concerns since it relies on nonfood bioresources, 

 ese lignocellulosic materials 
are relatively inexpensive and available in large quanti-
ties. One of the most commonly examined lignocellulosic 
materials for second-generation ethanol production is 
 sugarcane bagasse.7–10
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million metric tons with the top countries located in Latin 
America and Asia.6,15  rst (~40%), India 

 ailand fourth (~5%), 
Mexico sixth (~2.5%), and Colombia seventh (~1.5%) in 
global production rankings. Argentina has increased its 
average sugarcane growth over the last few years and now 
contributes to 1.1% of world production.16 Table 1 shows 
the most recent approximate sugarcane crop production in 

 erent countries.
 e majority of Colombian sugarcane plantations are 

located around the Cauca River Valley, and grow all year 
round with the potential to produce around 954 000 L d−1 
of ethanol from sugarcane juice.17  is would represent the 
second largest ethanol producer in Latin America with all 
bioethanol coming from sugarcane.17,18 Sugarcane plantation 
in Cauca River Valley in Colombia is harvested on around 
200 000 ha of land and it is estimated that the country can 
potentially generate 3.8 million L d−1 of fuel ethanol by 
2020.19 In Mexico, sugarcane is harvested through manual 
cutting once a year in a period between December and 
May.20 Although Mexico is known for sugarcane crops, sug-
arcane yields decreased from 72 to 64 metric ton ha−1 annu-
ally in the last decade, which was attributed primarily to cli-
mate change.21 Cuba used to be one of the largest exporters 
of sugar in the world with its main export market being the 
USA until the commercial trade blockage in the early 1960s. 
Cuba turned to the Soviet Union and Eastern European 
countries for trade but eventually lost these markets in 1991 
due to the collapse of Communism. Since then sugarcane 

 cantly declined from 80 million metric 
tons yr−1 to 24 million metric tons yr−1 from 1991 to 2004. 
In 2005 it declined to 11.6 million metric tons yr−1 follow-
ing the trend observed in the preceding years.22 However, 
Cuba has great potential for sugarcane production and 
energy derived from sugarcane agricultural residues is under 
review.23 Argentina, on the other hand, has its production 

Sugarcane is a versatile plant grown for sugar produc-
tion, and its major by-product is bagasse.11 Bagasse is the 

 er sugarcane is milled for juice extrac-
tion. In sugarcane production, the bagasse retrieved from 
crops is roughly 27–28 dry weight % of plant  biomass.1,12 
It is a highly heterogeneous material that consists roughly 
of 20–30% lignin, and 40–45% cellulose and 30–35% 
hemicellulose13 with limited amounts of extractives and 
ash. Its composition makes it a promising feedstock for 
second-generation biofuel production. Similar to other 
lignocellulosic materials, sugarcane bagasse has low nutri-
tional value, which precludes concerns about the food vs. 
fuel debate. A variety of species of sugarcane, Saccharum 
spp, are grown in Latin America; this leads to numerous 

 ering resources of bagasse, which is generally underu-
tilized. Furthermore, bagasse represents approximately 
0.3 metric ton for every 1 metric ton of sugarcane1 grown 

 en considered a waste stream. A comprehensive 
understanding of bagasse chemical constituents and the 
physical and chemical characteristic changes associated 
with the bioconversion process from biomass to biofuel 
is necessary in order to amplify bagasse as a renewable 

 e delicate problem for second-generation biofuel 
production is the optimization of pre-treatment technolo-
gies, which may include hydrothermal, dilute acid, steam 
explosion, alkaline, and organosolv. Although it is costly, 
the pre-treatment of bagasse has been reported to facilitate 
up to 90% conversion of sugars to ethanol compared to 
20% without pre-treatment for acid hydrolysis.14

Sugarcane in top producing 
countries
Originally from Asia, sugarcane can be found in most 
tropical and subtropical climates. As of 2013, the world 
sugarcane production accounted for approximately 1900 

Table 1. Sugarcane production.
Sugarcane 
crops

Brazil1 Mexico21,91 Colombia17 Argentina16,92 Cuba22,23,93 India25 Thailand15 China15 World15,17

Year 2013 2012 2013 2010 2009 2012-2013 2013 2013 2013
Average 
 production 
 (million  metric 
ton yr−1)

743 42.5-44.6 21.5 19 11.6 341.2-350 100.1 125.5 1877.1-1911

Average 
annual yield 
of  sugarcane 
(metric 
ton ha−1)

120 65 108 56 22.4 70 62.6 — —
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 orts such as simple sequence repeat 
and  marker-assisted  selection27 where hybrid sugarcane 
plants have been derived from the crossing of   cinarum 
and S. spontaneum for commercial purposes.6,28

Sugarcane processing

 er growing for 12–16 months, sugarcane is cut for col-
lection. Manual harvest involves burning the crop for col-

 is collection 
method is still used although many companies are projected 
to utilize mechanized harvesting of green sugarcane due to 
worker safety and environmental concerns.29 Mechanical 
cutting does not involve burning the cane before collection; 
however it presents some operational challanges.29 It has 
been highly adopted since it replaces the labor of up to 100 
workers per farm in manual harvest.30 In most recent stud-
ies, the state of São Paulo in Brazil used the green-harvest 
system for the cane, which accounted for 65.2% of the har-
vesting method and is expected to banish the burning har-
vest by 2029.31 Mechanical cutting does not permit the cane 
to be washed because the loss of sucrose is higher; hence 

 e chopped 
sugarcane is then placed in a shredder with the objective 
of opening the cells containing sugars and facilitating the 
sucrose extraction process. Grinding is an extraction pro-
cess, which results in juice extraction and the agriculture 

 rst batch of juice extracted 
goes to sugar manufacturing and about 55%32 goes to etha-
nol production. Sugarcane is usually cultivated for six years 
before replanting.20 Sugarcane maturity, harvesting method, 

  ciency of equipment used for the extrac-
 ect the composition of sugarcane 

bagasse.

Pre-treatment of sugarcane 
bagasse

 e conversion of bagasse to biofuels has been actively 
studied using both the biological and thermal platform. 
One of the most promising pathways is second-generation 

limited to the northern, fertile, warm crop areas. Argentina 
 at region in northern parts of the country, 

usually referred to as the Pampas, due to the very fertile land 
and moderate warm climate that  permits year-round crop 
growth. Production is located on 320 000 ha of land.16 Brazil 
is the leading country in sugarcane crop production with an 
estimated 55% of sugarcane transformed into ethanol, which 
yields an average of about approximately 68 liters per metric 
ton of sugarcane.18 As of 2013, India is the second biggest 
producer of sugar in the world (27%).24 Its cane is planted 
throughout three seasons (spring, summer, and fall) in the 
northwestern region, with 12–14 months of duration and its 
cultivation yielding higher amounts of cane and sugar recov-
ery.25  cant sugarcane production 

 is 
 ailand as the fourth largest producer 

of sugarcane in the world with 51 functioning mills, 100 000 
farmers on 1.6 million ha of land.15

Sugarcane agricultural 
characteristics
Sugarcane belongs to the family Poaceae of the genus 
Saccharum. Its taxonomy and nomenclature have been 

  cult to record over the years but essentially the genus 
Saccharum (S.) consisting of six species known as   ci-
narum, S. spontaneum, S. robustum, S. sinense, S. barberi, 
and S. edule, and some of its agricultural characteristics are 
shown in Table 2. Among the sugarcane species,   ci-
narum contains high sucrose; however it has poor resist-
ance to disease. S. spontaneum is highly adaptable and 
may grow in various altitudes in tropical and subtropical 
climates. Due to the susceptibility to some diseases found 
in the most common specie (   cinarum), breeding 
methods of sugarcane have been developed. In the last three 
to four decades, one of the major contributions of breeding 
sugarcane has been to produce higher sugar yield. Hence 

 cation in sugarcane chemical com-
position, for example the breeding varieties from 2011 had 
higher lignin and ash content than that of 2009, potentially 
leading to lower glucose yield.26 Currently, there are numer-

Table 2. Characteristics of major sugarcane species.
Reference:6,55,94 S. offi cinarum S. spontaneum S. robustum S. sinense S. barberi S.edule
Culms thickness (cm) 3.5–6 ~4 2.0–4.4 ~2 ~2 —

Height of plant (m) 1–6 5 10 5 5 —

Chromosome number 2n=80 2n=40-128 2n=60-~200 2n=80-124 2=111-120 2n=60-80

Classifi cation Noble canes Wild species Wild species Ancient hybrid Ancient hybrid Wild species
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of  hemicelluloses.37–39 However, shorter periods of time 
ranging from 1 to 20 min and temperatures lower than 
200°C are more commonly used so to minimize changes 
in lignin and cellulose.

 e extrusion process is a physical pre-treatment 
method that utilizes irradiation, and comparable to other 
treatments, targets the degradability of lignocellulosic 
materials for the enhancement of enzymatic hydrolysis. 
Such irradiation treatment for sugarcane bagasse comes in 
the form of microwaves, ultrasound and gamma rays.33,40 
Gamma rays increase cellulose crystallinity as well as 
surface area, whereas microwave and ultrasound irradia-
tion, given adequate conditions, decrease crystallinity of 
cellulose.33,40,41

  cient in breaking down hemicellulose 
and maximizes sugar yield from bagasse. It is a commer-
cial method adopted by many researchers however the cost 
is claimed to be higher than that of liquid hot water pre-
treatment.37 Dilute acid and concentrated acid are two types 
of acid hydrolysis. Dilute acid usually uses less than 10% 
acid concentration while concentrated acids is greater than 
10%.42 Acids such as sulfuric and phosphoric acid help to 
solubilize hemicelluloses and transform them into ferment-
able sugars.43 In sugarcane bagasse pre-treatment using sul-
furic acid with 0.5% concentration at 121°C during 60 min 
yielded 24.5 g L−1  er cellulose hydrolysis.13 

 e use of hydrochloric acid has also been studied at 130°C, 
1.25% HCl concentration for 10 min resulting in 76.6% 

 er 72 h of enzymatic hydrolysis.44

cellulosic ethanol as summarized in Fig. 1. Pre-treatment 
is one of the major steps in the biological conversion of 
bagasse to bioethanol as it reduces its recalcitrance. It can 
be accomplished using biological, chemical, physical, or 

 e reduction in 
recalcitrance has been attributed to several factors including 
changes in the interactions of hemicellulose, cellulose, and 
lignin; increases in cellulose accessibility; removal of lignin-
carbohydrates complexes; and possible reductions in cellu-

 ects increase 
sugar yields from cellulose thereby increasing ethanol fer-
mentation yields provided fermentation inhibitors are man-
aged. A variety of pre-treatments have been used in recent 
studies for sugarcane bagasse as summarized in Table 3.

Steam explosion is a physico-chemical pre-treatment 
prevalently used in sugarcane industry due to its low 
environmental impact and cost.8,33 It is a process in which 
the lignocellulosic materials in sugarcane bagasse are 
exposed to hot steam and pressure followed by explosive 
decompression of bagasse that results in lignin rearrange-
ment due to partial hemicellulose hydrolysis and lignin 
solubilization due to high temperatures.34 Enzymatic 
hydrolysis is also facilitated by changes in cellulose crys-
tallinity and degree of polymerization caused by steam 
explosion.35

Hot water pre-treatment of bagasse is environmentally 
 cial as there is reduced deterioration of polysac-

charides, and consequently lower inhibitor  generation.36 
 e disadvantage to this pre-treatment is the high 

 is 
method generally employs temperatures ranging from 
120 to 230 °C for 1–80 min and may recover 55 to 84% 

Figure 1. Schematic for bioethanol and biopower for 
sugarcane bagasse.

Table 3. Different pre-treatment conditions for 
sugarcane bagasse.
Pre-treatment Operating Conditions Reference
Steam 
explosion

0.6–4.8 MPa, 160–260°C, 
15 min

33, 95

Hot water 120–230 °C, 1–80 min 37–39, 83

Alkaline 53.2–120 °C, 4–65.6 h 33, 46

Organosolv 150–200°C, 30–90 min, 
35–70% of solvent

33, 37, 45, 83

Dilute acid 100– 120 °C, 40–120 min, 
1.8–10% of acid concentration

42, 96

Concentrated 
acid

80 °C, 90 min, 18–40% of acid 
concentration

42

Ionic liquids 60–140 °C, 5–360 min, 3–10% 
of solvent

48, 50–52

Dilute acid (1) + 
microwave 
heat (2)

(1) 1.56% of acid 
 concentration, 0.2M, pH 0.68
(2) 130–190 °C, 5–10 min, 
2.45  GHz, 900 W

41
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intra- and intermolecular hydrogen bonds that facilitates 
 brils.54  e average molecular weight 

of sugarcane bagasse cellulose ranges from 157 800- to 
168 400g mol-1; 50  bers range 
from 1.0 to 1.5 mm.55 A cellulose unit, known as elemen-

 brils, 
which can then be cross-linked by hemicellulose matrices 

 brils, which creates resistance to chemical 
and enzymatic degradation.

Degree of polymerization pertains to the number glu-
 uence 

 e average 
degree of polymerization (DPw) in sugarcane bagasse cel-
lulose ranges from 974 to 1039.50  er-
ent cellulose isolation methods and is dependent on the 
intrinsic viscosity (η). Intrinsic viscosity is the measure of 
volume occupied by the macromolecule and their ability to 

 ow (Table 4).56 When sugarcane bagasse was sub-
 cation and potassium hydroxide isolation 

the DPw was 1406.5 while the combination of acetic and 
nitric acid lowered DPw to 822.5, indicating that the acetic 
and nitric acid mixture degrades the macromolecule of 
cellulose more than potassium hydroxide.56

 e predominant polymorph of cellulose is known as 
 rac-

tion (XRD) and solid state cross polarization magic-angle 
spinning carbon-13 nuclear magnetic resonance (CP/
MAS 13CNMR) spectroscopy. 56 XRD is one of the most 
commonly used techniques for crystallinity index (CrI,  %) 
analysis57,58 and it showed that the untreated bagasse con-
tains an average CrI of 56.7%. Table 4 shows the CrI of 

 is index is fre-
quently used to determine relative quantity of crystalline 
material present in sugarcane bagasse. CP/MAS 13CNMR 
has shown to be extremely resourceful in the morpho-

 cations analyzed in cellulose throughout 
  corresponds 

to the C-6 crystalline cellulose signal and this is ratioed to 
56

Hemicellulose structure
Hemicellulose is a heteropolysaccharide of low molecu-
lar weight. It averages 7380g mol−1 in bagasse.59 Sugar 

Organosolv pre-treatment of sugarcane bagasse mainly 
utilizes ethanol (EtOH) and water as an organic solvent 
mixture.33  e α-aryl ether linkages of lignin are reactive 
under these conditions and are hydrolyzed and solubi-

 is process is convenient for small mills because of 
its ease of recovery method and sulphur free discharge37 
but remains costly.33 When bagasse was mixed with 60:40 
EtOH/water with 5% dosage of acetic acid at 190°C for 

 er 72 h of enzymatic 
hydrolysis.45

Alkaline pre-treatments of bagasse promote the separa-
  cient in the removal of lignin. 

 e alkali usually causes a swelling in the biomass, which 
allows for the decrease in cellulose crystallinity. In con-
trast to other pre-treatments, this particular process works 
at low reaction pressures, temperatures and concentration, 
which can be linked to reduce fermentation inhibitors and 
low cost.46 However, its biggest disadvantage is associated 

  culty of alkali recovery. A sodium hydroxide 
pre-treatment (i.e., 110°C for 1 h and 0.18% of NaOH) of 
bagasse has been shown to result in 77.3% sugar release 

 er 72 h of enzymatic hydrolysis.44

Ionic liquids are salts composed of anions and cations of 
organic compounds, which are poorly organized making 
them have a melting point below 100 °C.47  ese solvents 
have great thermal stability and non-volatility48 and are 

 cation of bagasse..49 
 erent ionic solvents, most commonly used for 

sugarcane bagasse is 1-ethyl-3-methylimidazolium acetate 
 ective 

in dissolving cellulose.50 Other solvents used for pre-treat-
ment of bagasse that have been reported include 1-butyl-
3-methylimidazolium acetate ([Bmim][Ac]), 1-allyl-3-meth-
ylimidazolium chloride ([Amim][Cl]), 1-butyl-3-methylim-
idazolium chloride ([Bmim][Cl]) and 1,3-dimethylimida-
zolium dimethyl phosphate ([Mmim][DMP]). 48,51,52  ese 
ionic liquids can remove up to 60% of lignin in sugarcane 
bagasse along with decreasing the crystallinity of cellulose 
 bers.53 It has been reported that a 1:20 solution of bagasse 

to ([Mmim][DMP]) at 120 °C for 120 min resulted in 70.38% 
 er 48 h of enzymatic hydrolysis.52

Sugarcane bagasse constituents 
and characteristics

Cellulose structure
Cellulose is a homopolysaccharide chain composed of 
anhydroglucose units linked by β- (1,4)-glycosidic bonds 
(Fig. 2) which form a crystalline structure due to extensive 

Figure 2. Structure of cellulose.
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which integrate easily with one another creating stability 
 exibility.64 In sugar cane the hemicellulose content 

is found to be low, on average 19.90%,65 compared to that 
of sugarcane bagasse which is approximately between 
30 and 35%.13  ere are many methods of extraction of 
hemicellulose such as autohydrolysis,66 active oxygen spe-
cies (oxygen and hydrogen peroxide) and solid alkali,61 
and alkaline peroxide.67,68 In general, isolation comes 
from multiple alkaline extractions causing the cleavage of 
ester linkages and extracting the hemicellulose from the 
lignocellulosic matrix. Potassium hydroxide and sodium 
hydroxide with hydrogen peroxide pre-treatments for 
hemicellulose isolation have shown high values for xylose, 
83.1–84.6 and 85.02%, respectively.59,68 In comparison, 
dewaxed and distilled water, and water with solid alkali 
precooking resulted in much lower xylose yields, 55.20 
and 57.43%, respectively (Table 5).59,61

 yliramirp si essagab ni esolullecimeh fo noitisopmo c
galactose (11.5–39.9%), xylose (15.5–28.9%) and glucose 
(17.5–50.5%) with smaller amounts of arabinose (5.35–
14.31%), mannose (0.0–14.0%), rhamnose (2.5–10.6%) 
and uronic acids (1.0–2.3%).60 Hemicellulose in sugarcane 
bagasse is composed of β-(1,4)-xylo-pyranose backbone, 
having about 200 β-xylopyranose residues linked by 
1,4-glycosidic bonds, glucomannas and galactomannans, 
xyloglucans, β-glucans and small amounts of uronic 
acids.61,62  e degree of branching in hemicellulose is 
given by the arabinose/xylose ratio; hence, the lower the 
ratio the higher the degree of polymerization and like-
wise the higher the ratio the shorter the polymer chain.60 
Values for the arabinose/xylose ratio are approximately 
0.2 for bagasse.  Hemicellulose is linked to lignin by 
covalent bonds, whereas the linkage between hemicel-
lulose and cellulose is by the way of hydrogen bonds, 

Table 4. Degree of polymerization of isolated cellulose of sugarcane bagasse and crystallinity 
index of commercial type bagasse.

Cellulose of sugarcane bagasse
Cellulose Aa,56 Cellulose Bb,40 Cellulose C97 Cellulose D98 Cellulose E99

DPw 822.5–1406.5 1858.1–2040.8 1277.0 1309.6 1356.0

Intrinsic Viscosity 
(η, ml g−1)

256.3–415.6 534.1–631.6 378.0 387.2 399.5c

Molecular Weight 
(Mw, g mol−1)

133250–227850 301000–362600 206800 212150 Not reported

Sugarcane bagasse commercial variety
SP79–101157 RB86751557 SP81–32557 RB9257957 Bagasse E99

0.264.066.258.557.25% IrC
a,b range of 6 isolated cellulose of bagasse under different isolation conditions.
c,56 intrinsic viscosity (η) calculated from DPw

0.9=1.65(η)

Table 5. Content of neutral sugars and uronic acids of isolated hemicellulose from sugarcane bagasse.
Isolation of 
Hemicellulose

Xylose (%) Arabinose (%) Glucose (%) Galactose (%) Mannose (%) Rhamnose (%) Uronic 
Acids (%)

Dewaxed + distilled 
water59

55.20 10.73 20.42 7.68 4.13 1.84 6.95

NaOH59 81.37 11.93 3.97 1.78 0.47 0.48 3.50

NaOH + H2O2
59 85.02 8.65 5.87 0.46 Trace Not detectable 1.75

H2Oa, 61 57.43 6.25 28.52 6.36 — — 1.44

H2O + KOHa, 61 79.92 5.5 12.03 0.88 — — 1.67

KOHb, 68 83.1–84.6 11.0–12.1 2.1–3.1 0.5–0.7 — — 1.4–2.6

H2O2
c, 67 73.1–82.6 3.8–7.2 3.8-7.9 — — — 3.6–7.0

a precooked with H2O2 and MgO.
b range composition of 7 isolated hemicellulose.
c range composition of 19 isolated hemicellulose.
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r -coumarates are  primarily attached to the lignin poly-
mer. Ferulates however, showed acylation of arabinosyl 
residue from arabinoxylan chains revealing that ferulates 
are generally linked to carbohydrates in the cell-wall.72 
Ionic liquid and hot water  pre-treatment both hydro-
lyzed the b -O-4 inter-unit links. 51,69  erent methods 

  cient 
for lignin extraction processes showing the cleavage of 
b -O-4’ linkages such as: dilute acids followed by steam 
explosion and ethanol washing, as well as alkali followed 
by steam explosions.69 Proton, carbon, phosphorus and 
two-dimensional heteronuclear single quantum coher-
ence nuclear magnetic resonance (1H, 13 31P and 2D 
HSQC NMR) are primarily used to identify the func-
tional groups in the isolated lignin structure.51,69 An 
assessment of various hydroxyl groups in organosolv 
lignin, with results S-OH: 0.58 mmol g−1, G-OH:0.47, 
H-OH:0.53 among others, can be obtained using 31P 
NMR spectra. 75  e 2D HSQC NMR is able to approxi-
mately determine the carbohydrate complexes of lignin 
that 1H, 13C and 31P NMR are not able to detect due 
overlapping in signals.51 Isolated lignin from sugarcane 
bagasse was reported to be composed of 83% of b -O-4’ 
links, alkyl-aryl ether bonds, and very few quantities, 
6% of b -5, phenylcoumarans; and, molar ratio of H:G:S 

72 concluding 
bagasse is S-rich (Table 7). According to del Río et al.8 
the lignin of bagasse is derived from mature stem and 

 er isola-
tion are typically analyzed using Fourier transform infrared 
spectroscopy (FTIR) and 13C NMR.  FTIR has indi-
cated complete rupture of ester bonds when under alkali 
pre-treatment conditions (10% potassium hydroxide with 
20°C, 35°C and 50°C). 68,13C NMR was able to detect strong 
signals indicating the presence of 1,4-linked b-D-Xyl p units 
and the 4-O-methoxyl group of glucuronic acid residues 
in xylan.59,61 It was concluded that b-D-Xyl p units was the 
main component in bagasse hemicellulose.61

Lignin structure
Lignin, the most abundant aromatic polymer, is an amor-

 e 
biosynthesis of lignin could be considered to arise from 
polymerization of three types of phenylpropane units as the 
monolignols: p- coumaryl, sinapyl and coniferyl alcohols 

 ese monolignols 
can then give rise to the p-hydroxyphenyl (H), syringyl 
(S), and guaiacyl (G) lignins units.51 Lignin in bagasse has 
a molecular weight average range of 507–3973mol g−1.69 
Lignin in sugarcane is extremely low, average of 2.37%70 and 
4.16%,65 compared to ~25% found in sugarcane bagasse. 
Additionally, it has been reported that lignin content in sug-
arcane genotype IACSP04-627 to be 8.12% and IACSP04-
065 to be 4.32%.71 Table 6 shows the lignin content in 

 erent sugarcane bagasse.
 ects most pre-treatment methods as well as 

enzymatic hydrolysis, thus multiple studies have been 
made for structural information of lignin, such as ionic 
liquid, ammonia, dilute acid, etc.51,56 Characterization 
methods for bagasse such as pyrolysis coupled to gas 
chromatographymass spectrometry (Py-GC-MS) showed 
that both coumaric and ferulic acid play an important 
role in the structure of bagasse.72–74  e g-OH acylation 
of lignin side-chain by r -coumarates indicating that 

Table 6. Lignin content in sugarcane 
bagasse from different variety of sugarcane.

Lignin content in sugarcane 
bagasse (%)

Sugarcane variety Klason lignin Acid-soluble 
lignin

Total lignina 

Hybrid 140100 — — 21.5 ± 0.2

Hybrid 321100 — — 20.2 ± 0.4

Hybrid 58100 — — 18.6 ± 0.1

Hybrid 146100 — — 18.6 ± 0.1

Hybrid 89100 — — 16.8 ± 0.1

PE-BRb,101 — — 21.1 ± 0.9

NA-BRc,9 19.7 ± 0.1 2.2 ± 0.2 21.9 ± 0.3

Raw bagasse69 25.9 ± 0.3 4.7 ± 0.3 30.6 ± 0.6

Raw bagasse B102 22.9 ± 0.7 0.06 ± 0.0 23.0 ± 0.7

RB86751572 17.8 ± 0.6 2.2 ± 0.2 20.0 ± 0.8
a sum of klason and acid-soluble lignin. 
bsugarcane bagasse from Pernambuco - Brazil.
c sugarcane bagasse from Nova America - Brazil. 

Figure 3. Typical monolignols.
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 raction (XRD) has been used to determine the inor-
ganic oxide content in bagasse ash (Table 8).76–78

Extractives in sugarcane bagasse range from 2.3 to 
10.5% of total chemical composition.79  ese extractives 
are hydrophobic and can be fatty acids, waxes, and pro-
teins, among others.79,80 Research has reported that about 
0.9% of acetone extractives contained about 140 mg k−1 
of n-fatty acids, 700 mg k−1g of n-aldehydes and 330 mg 
k−1 of n-fatty alcohols in bagasse.79 For chemical analysis 
purposes, extractives are usually removed from sugarcane 
bagasse. However, extractives may be a great source of 

 neries for cellulosic ethanol 
production from bagasse.9

Biomass to bioethanol
  cient hydrolysis of the sugarcane bagasse along with 

the subsequent fermentation of sugars creates a compelling 
commercial opportunity. According to Linoj et al.,81 sug-
arcane encompasses two-thirds of the production of sugar 

 ning sugarcane 
bagasse to bioethanol would include an ease of production 
when integrated into a sugarcane ethanol existing mill, 
hence lowering any necessary investments.

Sugarcane bagasse to bioethanol
A study presented by Walter et al. showed that if 76% of 
bagasse is pre-treated and enzymatically hydrolyzed for 
sugar, this sugar could be fermented to yield up to 149.3 
liters of ethanol per ton of bagasse.82 Other studies suggest 
that in a two step pre-treatment using a dilute acid pre-
treatment condition at 175°C for 40 min and 1% H2SO4 
concentration with a 1:1 solid liquid ratio, followed by an 
organosolv treatment, it is possible to achieve 192 liters of 
ethanol per ton of bagasse. Whereas using similar condi-
tions, 120°C for 40 min with 1% H2SO4 concentration with 
a 1:4 solid liquid ratio followed by organosolv, ethanol 
generation could produce up to 180 liters of per ton of sug-

therefore is rich in syringyl (S) lignin, which is present in 
 e conclusions  indicated that lignin from 

sugarcane bagasse is mainly composed of b -O-4’ alkyl-
aryl ether linkages.

Ash and extractives
 er it is used for fuel 

in plants cogeneration systems is bagasse ash. Sugarcane 
bagasse ash is black in color and contains 2.39 g cm−3 of 
particle density with irregular shaped particles.76 It con-
tains about 87.8% of sand with particles sizes greater than 
63  μm, 11.50% of slit with particles sizes ranging from 
2 to 63  μm, 0.7% of clay with less than 2  μm and 10.32% 
of organic matter.76,77 In Brazil, sugarcane bagasse ash 
generation was estimated to be approximately 2.5 million 
tons per year and is discarded primarily as soil fertilizer.77 
Economical and technological development for the appli-
cation of ash have grown in the past few years. Ash from 
bagasse is rich in silica and hence may be used for recy-
cling purposes such as ceramic raw material, additive to 

 ne aggregate in mortars.77,78 X-ray 

Table 7. S:G:H ratio of lignin in sugarcane bagasse.
Ball milled 

lignin69
Ethanol 
lignin69

Water soluble 
lignin69

Dioxane 
lignin69

Ball milled 
2 lignin72

Whole cell wall 
lignin72

Lignin aromatic units

0.060.060.556.354.854.55)%( S

0.730.833.835.235.031.93)%( G

0.20.37.69.311.115.5)%( H

6.16.14.16.19.14.1oitar G/S

r -coumarate/ferulate ratio 9.8 4.5 1.9 6.2 2.6 12.0

Table 8. Chemical characteristics of sugarcane 
bagasse ash.
(%) Bagasse 

ash 177
Bagasse 
ash 2103

Bagasse 
ash 376

Bagasse 
ash 478

SiO2 61.59 72.95 85.55 80.2

Al2O3 5.92 1.68 2.29 2.60

Fe2O3 7.36 1.89 1.21 5.60

K2O 6.22 9.28 1.33 4.00

CaO 5.00 7.77 4.05 1.80

MnO 0.10 — 0.08 0.20

TiO2 1.46 — 0.20 1.40

SO3 0.42 4.45 2.28 0.10

MgO 1.17 1.98 — 1.60

P2O5 0.98 — 3.01 1.40
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arcane bagasse.83  erent pre-treatments and pathways for 
 ects on  glucose 

concentration available for fermentation contributing to dif-
ferent ethanol production (Table 9).

Cogeneration systems are very common in sugar 
mills.  rst and 

 erent 
boiler pressures (2.2–9.0 MPa), it was shown that the system 
using 2.2 MPa achieved a maximum yield of anhydrous 
ethanol production of 113.7 liters per ton of sugarcane.85 
According to Dias et al.86  ect distillation 
process of sugarcane bagasse is compared to conventional 

 ect process, the distillation col-
umns operates under vacuum pressures ranging from 19 to 

 cation columns pressure ranges from 
101 to 135 kPa with an extractive distillation process using 
monoethyleneglycol (MEG) for ethanol dehydration, pro-
viding higher yields of anhydrous ethanol from bagasse than 
conventional (Table 10). Hemicellulose pentoses, mainly 

  cult to transform for the pro-
duction of second-generation bioethanol, hence metabolic 
microorganisms are necessary to succeed on pentose.66 

 us, pre-treatment of bagasse is necessary in order to mod-
ify chemical composition, size and structure in such manner 
in which hydrolysis can be carried out promptly and with 
increased yields.

Biomass to biopower
Power generation in the world is another cause of increased 
pollution and climate change. Countries are seeking 
renewable energy sources for electricity production for 
the foreseeable future. In 2009, the Energy Information 
Administration (EIA) compared renewable electricity to net 

 ve  countries. Although 
China and the USA are the leading net power generation 

 les are less 
than 17% of the electricity generated. By contrast, Brazil 
and Canada have been more successful regarding renewable 
energy, producing 89.6% and 63.3%, respectively of the total 

 y hydroelec-
tric power.

Cogeneration systems generate electricity and thermal 
energy at high output capacities. In 2004 Cuba reached 
600 MW of cogeneration capacity in the 85 sugarcane 
mills active.22,23 If 45 of the active 85 mills, which has a 
capacity of 4600–14000 ton of cane a day, were modern-
ized cogeneration capacity would increase substantially to 
1400–1600 MW.22

Table 9. Ethanol yield from fermentation of SHF 
and SSF under different pre-treatments.

Parameters

Bagasse 
pre-treatment

Initial glu-
cose con-
centration (g 
L-1)

Ethanol 
 produced 
(g L-1)

Ethanol yield 
(%, ethanol 
 produced 
by gram of 
glucose) 

Separate hydrolysis and fermentation (SHF)

SEBa,102 57.7 ± 1.4 25.6 ± 0.3 44.4

SA-AWB6b,102 50.1 ± 0.2 23.4 ± 0.2 46.6

SA-AWSEBc,102 50.1 ± 1.4 20.4 ± 0.1 40.8

AHd,9 57.8 25.2 43.6

H3PO4
9 54.9 24.9 45.4

H2SO4
9 54.9 20.1 43.7

Simultaneous saccharafi cation and fermentation (SSF)

AHd, 9 54.9 18.8 34.2

H3PO4
9 53.4 16.9 31.6

H2SO4
9 48.2 18.4 37.2

a Steam-exploded bagasse.
b Sono-assisted alkali-washed bagasse.
c Sono-assisted alkali-washed steam-exploded bagasse.
d Autohydrolysis (Liquid hot water) bagasse.

Table 10. Sugarcane juice and bagasse results 
from conventional and double-effect distillation 
processes.
Reference:86 Conventional 

distillation
Double-effect 

distillation
Anhydrous  ethanol from 
bagasse (L t−1 cane)

18.8 22.0

Anhydrous ethanol from 
 sugarcane juice (L t−1 cane)

83.7 83.7

Table 11. Top 5 countries in electricity generation 
and its renewable use.
Reference1 Generated electricity 

(billion kWh)
Renewable 

 electricity %
7.61506.675anihC

9.01256.924ASU

6.98852.014lizarB

Canada 371.008 63.3

8.71722.561aissuR

World 3760.590 —

Sugarcane bagasse to biopower
 en utilize sugarcane bagasse 

as a source of fuel because it can produce enough power 
  cient 
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263.9 kg CO2 equivalents per ton of carbon, with 67% from 
conventional ethanol production and 11% from surplus 
electricity production. While the same variables were taken 
into consideration in the hydrolysis process, the avoided 
emission was estimated to be 253.2 kg CO2 equivalents per 
ton of carbon, with 94% from ethanol production and 6% 
from surplus electricity production. Another study deter-
mined that the avoided carbon dioxide emissions were 
larger for maximum ethanol production than that of the 
electricity production, concluding that a plant in which 
produces ethanol is more desirable then a plant that pro-
duces electricity using bagasse in order to avoid CO2 emis-
sions.90  ese processes are still under development and it 
is unknown which method is superior or more feasible and 

 ective for a commercial scale.

Conclusions
Sugarcane is one of the most abundant crops in the world 
having innumerous mills and plants for sugar extrac-

 rst-generation ethanol production. Most Latin 
American countries possess tropical climates enabling 
them to generate sugarcane crops. Brazil alone is the great-
est sugarcane producer utilizing ethanol for the majority 
of its cars sold, followed by Mexico and Colombia, and 
other countries with great potential for both bioethanol 
and biopower growth. Bagasse is a promising agricultural 
residue in bioethanol production and power generation 
due its high cellulose and average lignin and hemicellulose 
content.

Pre-treatment is one of the most crucial steps for ethanol 
 c pre-treatment 

that is most used for commercial purposes and is cost-
 ective, the appropriate method of pre-treatment fol-

lowed by acid or enzymatic hydrolysis and fermentation 
is important for high yields in the conversion of sugars to 
ethanol. Commonly used are steam explosion, which is 
used for partial hemicellulose hydrolysis and lignin rear-
rangement; and dilute acid, which transforms a solubilized 
portion of hemicellulose into fermentable sugars. Similarly 

 en still have a surplus of 
bagasse which can present environmental concerns due to 
its prolonged on site accumulation, which poses a threat 
for spontaneous combustion.87  e mills in Brazil gener-
ate on average 12kWh of electricity per ton of sugarcane 
bagasse, 330 kWh of heat energy and 16kWh of mechani-
cal energy.84

Steam-based sugarcane mills can be found in countries 
like Cuba and Brazil, which utilizes two types of steam 
turbines for low pressure steam and electricity produc-
tion: Condensing Extraction Steam Turbine (CEST) and 
Backpressure Steam Turbine (BPST).23,88 CEST are high-
pressure turbines used in sugar factories that are favored 
for pressure levels above 65 bar.89 Any accessible residue 
from sugarcane processes such as lignocellulosic biofuel 
would be implemented for generating electricity. BPST, on 
the other hand, are non-condensing turbines, commonly 

 neries, in which exhaust steam at lower pres-
sure loads and are usually cheaper than condensing tur-
bines. BPST could generate up to 99.51 kWh per ton cane 

could generate 121 kWh per ton cane, meet the energy 
demand at the mills and would export the surplus elec-
tricity, approximately 93 KWh per ton cane for public use 
(Table 12).88 Alves et al.88 also revealed that CEST yielded 
a surplus of electricity, unlike BPST because all available 
bagasse is consumed as fuel.

 cation and Fischer-Tropsch (GFT) conversion pro-
cess for sugarcane bagasse has been studied and concluded 

  ciency for both liquid fuel 
production and overall energy when compared to other 
conversion process such as acid or enzymatic hydroly-

 cation and fermentation processes.82,83 
Research studies by Walter et al.82 using sugarcane residues, 
trash, and bagasse were analyzed for production of etha-

 cation 
and Fischer-Tropsch processes. Multiple variables to avoid 
emissions of greenhouse gas emissions were hypothesized 
and it was concluded that GFT was slightly more feasible 

 ective where the estimated avoided emissions was 

Table 12. Electricity productions in BPST and CEST system .
TSECTSPBmetsyS

Condition of turbine 1.9MPa, 593K 
(7MW)23

2.2–10MPa, 
573–803K88

6.0MPa, 
754K104

4.2MPa, 693K 
(38MW)23

6.3MPa, 793K 
(30MW)23

6.5–10MPa, 
753–803K88

Electricity generated (KWh t−1 
cane bagasse)

22.79 38.62–99.51 114.00 110.00 130.00 105.48–121.22

Electricity surplus (KWh t−1 
cane bagasse)

— 10.62–71.51 90.20 85.00 105.00 77.48–93.22
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 c processes have not been uti-
lized in a commercial scope, CEST turbines and GFT con-
version method appear to be promising due to its higher 

  ciency.
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